26 research outputs found

    DMVP: Foremost Waypoint Coverage of Time-Varying Graphs

    Full text link
    We consider the Dynamic Map Visitation Problem (DMVP), in which a team of agents must visit a collection of critical locations as quickly as possible, in an environment that may change rapidly and unpredictably during the agents' navigation. We apply recent formulations of time-varying graphs (TVGs) to DMVP, shedding new light on the computational hierarchy R⊃B⊃P\mathcal{R} \supset \mathcal{B} \supset \mathcal{P} of TVG classes by analyzing them in the context of graph navigation. We provide hardness results for all three classes, and for several restricted topologies, we show a separation between the classes by showing severe inapproximability in R\mathcal{R}, limited approximability in B\mathcal{B}, and tractability in P\mathcal{P}. We also give topologies in which DMVP in R\mathcal{R} is fixed parameter tractable, which may serve as a first step toward fully characterizing the features that make DMVP difficult.Comment: 24 pages. Full version of paper from Proceedings of WG 2014, LNCS, Springer-Verla

    Reuse of Neural Modules for General Video Game Playing

    Full text link
    A general approach to knowledge transfer is introduced in which an agent controlled by a neural network adapts how it reuses existing networks as it learns in a new domain. Networks trained for a new domain can improve their performance by routing activation selectively through previously learned neural structure, regardless of how or for what it was learned. A neuroevolution implementation of this approach is presented with application to high-dimensional sequential decision-making domains. This approach is more general than previous approaches to neural transfer for reinforcement learning. It is domain-agnostic and requires no prior assumptions about the nature of task relatedness or mappings. The method is analyzed in a stochastic version of the Arcade Learning Environment, demonstrating that it improves performance in some of the more complex Atari 2600 games, and that the success of transfer can be predicted based on a high-level characterization of game dynamics.Comment: Accepted at AAAI 1

    Language Model Crossover: Variation through Few-Shot Prompting

    Full text link
    This paper pursues the insight that language models naturally enable an intelligent variation operator similar in spirit to evolutionary crossover. In particular, language models of sufficient scale demonstrate in-context learning, i.e. they can learn from associations between a small number of input patterns to generate outputs incorporating such associations (also called few-shot prompting). This ability can be leveraged to form a simple but powerful variation operator, i.e. to prompt a language model with a few text-based genotypes (such as code, plain-text sentences, or equations), and to parse its corresponding output as those genotypes' offspring. The promise of such language model crossover (which is simple to implement and can leverage many different open-source language models) is that it enables a simple mechanism to evolve semantically-rich text representations (with few domain-specific tweaks), and naturally benefits from current progress in language models. Experiments in this paper highlight the versatility of language-model crossover, through evolving binary bit-strings, sentences, equations, text-to-image prompts, and Python code. The conclusion is that language model crossover is a promising method for evolving genomes representable as text
    corecore